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Functionals of functions of many independent variables lie at the basis 
of a large class of problems of mathematical physics. Many works have 
been devoted to detailed studies of the corresponding variational prob- 
lems. Of special importance among them are the investigations which ex- 
tend the Hamilton-Jacobi method of integrating canonical systems to this 
class of problems. Some classical results along this line are due to 
Volterra [1,21 and Fr&het 131 who obtained the first proofs for Jacobi’s 
theorem. In [41 L&y made a general study of equations in functional de- 
rivatives which play a fundamental role in the generalized Hamilton- 
Jacobi theory. These results, together with a number of others, have 
been presented in a systematic manner by Prange in [51. 

The classical considerations are of geometric nature and they cannot 
be derived directly from the variational problem for many unknown fUnC- 
tions of a single independent variable. Prange’ s results are somewhat 
different in this respect, even though they. too, were obtained by geo- 
metric means. A direct procedure similar to his, is, however, of great 
value in applications to the mechanics of continuous media. This pro- 
cedure will be used in the present work. 

For the sake of simplicity, we shall deal with problems for one un- 
known function of two independent variables. The generalization to the 
case of many unknown functions. or to more than two independent vari- 
ables, does, seemingly, not present any serious difficulties. 

1. Canonical system corresponding to the variational 
problem. Let US consider the problem of finding the extrestum of the 

functional 
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I = ss ‘L (2, y, z, z,, q,)dscdy 
G 

(1 *I) 

We impose the following condition on the comparison functions: 

20 = f(S) on the boundary r of the region C (l.:?) 

flere, and in w!lat follows, the superscript ' denotes values on the 

boundary. 

Let us introduce the additional condition 

a,- z-zx=o, CL- ay zy = 0 (1.3) 

We shall refer to the equations (1.1) to (1.3) as the problem with three 

unknown functions z, zz, z . With the aid of the Lagrange multipliers 
we construct the functiona I 

\\[L + p(g - z.y) + q(& - +My - \ P 6) lz” - f WI ds (I.41 
c 1 

Euler's equations have the form 

Lx - p = 0, Lzv - q = 0, L, - -$ - z = 0 (4.5) 

a2 a2 
Jy- z,=o, --zz,=o 

ay (1.6) 

'Tile natural boundary condition 

(l-7) 

is obtained from (1.4) by integration by parts. 

By selecting certain of the relations (l.S), (1.6) or (1.7) as the 
auxiliary conditions, we obtain different forms of the variational 

problem. Tf we take (1.6) for the auxiliary condition we arrive again 

at the problem (1.1) to (1.3). Addin the second of the conditions 

(l.S) and the first of (1.6), we obtain the canonical equations [51 

d; 
- = Ii,, arl- 
aY ay --H’+&g 

x 
(1.8) 

or, making use of the symbol for the functional derivative, we have 

az 6N a4 hN 
atl =&j-9 -5 = --. -= (1.9) 
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In order to obtain these equations, we introduce the notation 

qzl, - L (x, y, z.v, zu) = ff (~7 Y, .G z.c, d (1.10) 

namely, we perform the Legendre transformation with respect to the vari- 

able z 
Y’ 

‘IlIe double integral in the expression (1.4) now takes on the form 

. 
\I[ q z$ -- H (2, y, z, z,, q)ldzdy _. 
G 

(1.11) 

llle equations (1.9) are Euler’s equations for the functional (1.11) 

of two functions z and 7, or, what is the same thing, they are 

IIamil ton’ s equations for the functional (1.1). In the sequel we shall 

refer to the system (1.9) as the canonical system.* In order to be able 

to write down the canonical equations one has to be able to solve the 

equations (1.5) for zy. 

We shall make use of the notation 

M [z, q,l = L (x, y, z, z,, z ) dx, s N II, ql = [‘II (5, y, z, zx, q) dx . 
& x0 (1.12) 

‘Ihe functionals IV and N are connected by the relation 

XI 

N = - M + ’ qz&x 
s 
x. 

(1.13) 

3 'Ihe field of the functional (1.1). Prange [51 determines U. 

the field of the functional by a geometrical method. Following Gel' fand 
and Fomin 161, we will give a different determination of the field by 

making use of the concept of selfadjoint and matching boundary condi- 

tions. 

The boundary conditions of the variational problem under considera- 

tion can be given in various ways. Of special interest are the boundary 

l Selecting the first two conditions of (1.5) for the auxiliary ones, 

one can obtain a different form for the canonical system, namely 

This form is used in Volterra [1,21. 
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conditions which are determined by the functional itself in the follow- 
ing manner. Let S = Hz; yl be the functional; z is the functional argu- 
ment, and y plays the role of a parameter. 

Let us consider the variational problem for the functional 

ss 
L (x, y, z, z,, q,) dxdy - S(l) [z; a] + S(“[z; bl (2.1) 

G 

where we impose no auxiliary conditions on the comparison functions. The 
functionals S”’ and .‘St2) are not the same in general. Natural boundary 
conditions of this problem are the following 

(24 

In place of &V/6z 
second condition (1. 5 

we write q(x, y, z, zZ, zY) in accordance with the 
). We shall also write S in place of S”‘, and we 

consider the end condition 

(2.3) 

At each point x of the straight line y = a, this condition gives the 
quantity z,,(n, a) which is proportional to the corresponding direction 
cosine of the normal to the integral surface z = z(n, y). It is con- 
venient to write (2.3) in the form 

z, (x, a) = Y rz1 (2.4) 

where P[ZI is some functional. 

‘lhe definitions and theorems which follow in this section are the 
direct generalizations of the corresponding facts of the calculus of 
variation in one variable as given in [61. For the sake of completeness 
we considered it necessary to give them here with detailed proofs which, 
of course, are obtainable from the corresponding considerations in c61 
by formally taking the limit of an infinite number of unknown functions. 

Definition 2.1. ‘lhe boundary conditions (2.4) ascribed to the func- 
tional (1.1) are called selfadjoint if there exists a functional S[z, yl 
such that 

We have the next theorem which is the analogue of ‘lheorem 1 ( [61 , 
p. 137). 
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Theorem 2.1. In order that the conditions (2.3) may be selfadjoint 

on the straight line y = a, it is necessary and sufficient that the 
following conditions hold 

(2.6) 

Proo j. Necessity. ‘he se1 fadjoint boundary conditions are defined by 

the equation (2.3). Taking it with x = x1, and changing 2(x2, n), or, 

conversely, fixing x = x2, and changing 2(x1, a), we obtain (2.6) be- 

cause the right-hand sides of both results will hereby have the same 

value 

3~ (xl, U) 8~ (4 fij 

Sufficiency. If the conditions ( 2.4) imply (2.6), then there exists 

a functional ,?[z] whose functional derivative at y = n, coincides with 

q. Ihe variation of the functional 

!S Ldxdy - S IV+, 

(; 

set equal to zero, will then yield condition (2.3). This proves self- 

adj ointness. 

Dejinit ion 2.2. The boundary condition 

zy (Lr) = Y(i) [z] 

given when y = a, and the boundary condition 

(2.7) 

zg (x) = P [z] (2.8) 

given when y = b, are called matching conditions if every solution of 

the systems (1.9) satisfying the condition (2.7) with y = o also satis- 

fies the condition (2.8) with y = b, and conversely. 

Dejinit ion 2.3. Suppose that for all y( h < y \( b) we are given the 

boundary conditions 

zy (x, y) = Y 12; yl 

These boundary conditions form the field of the functional (1.1) if: 

a) for every value of y the conditions are selfadjoint, 
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b) if for any pair yl, yZ from [a, b] the conditions are matching. 

Suppose that the selfadjointness of the boundary conditions has been 

established. What additional requirements must be imposed on these con- 
ditions to make them matching conditions? In other words, when will 

selfadjoint boundary conditions form a field of the functional (l.l)? 

Theorem 2.2. The boundary conditions 

6M 6s 
-q=x- (2.9) 

will be matching conditions if the functional S[z; yl satisfies the 
ffamilton-Jacobi equation 

$+[H(cc,y,z,z,, ~)ds=O, or , -$ + N [y, 2; g] = 0 (2.10) 
x0 

This is a necessary and sufficient condition. 

k shall show that under the conditions of this theorem every mani- 

fold in the space (n, y, z) on which (2.9) is satisfied is an integral 

surface of Euler’s equation for the initial variational problem.* Equa- 

tion (2.9) implies 

The equation (2.10) can, therefore, be rewritten as 

Varying the last equation with respect to z, we obtain** 

l 

*+ 

The Hamilton-Jacobi equation can be obtained in the traditional way 
from Schroedinger’s equation of the quantum field theory [?I by 
taking the “classical limit.” 

In recent years, Arzhanykh [s-101 has attempted to construct the 
Hamilton-Jacobi equation of the classical field theory; this equa- 
tion is similar to the type considered by Volterra E1.d. 

We retain for the functional Iv the old notation in the next two 
formulas. 
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It follows from this that Euler’s equation is satisfied. Indeed, in 

(2.11) let us replace q by 6/‘A[r; ~v[.zll/~z and the functional N by the 

expression (1.13); performing now the indicated operations in (2.11) 

and taking into account the equation snl/Sz, = aL/azY, we obtain 

The condition of se1 fadjointness (2.9) yields 

PM [z; I [z]] PM [z; Y [z]] 
6zv (E* Y) 62 (z, Y) = $J% Y) 6z (59 Y) 

Therefore, equation (2.12) may be rewritten as 

Since 

(2.13) 

equation (2.13) may be written in the form 

x1 

+ \ 

ay Iz (L Yh Yl 

h 
aY 

Taking into consideration zY = 

y [z (E, Y); ~1 dE + (2.14) 

[z(x, y); yl and its implication 
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we can put equation (2.14) into the form 

6M d8M O -_--= 
61 dy SZ,, 

(2.15) 

Thus we have obtained Euler’s equation of the original variational 
problem. This proves the sufficiency of the condition (2.10). Its 
necessity is established by reversing the above process. 

The close analogy which exists between the one-dimensional and multi- 

dimensional variational problems is due to the fact that Jacobi’s theorem, 
and with it the Hamilton-Jacobi method for integrating the canonical 
system, can be extended in a natural way to variational problems involv- 
ing multiple integrals [l-51. 

As is known, Jacobi’s theorem in its classical formulation yields a 

method for obtaining the general solution of a canonical system by means 
of a known complete integral of the Hamilton-Jacobi equation. 

If one considers a system with an infinite number of degrees of free- 

dom, the behavior of which is described by the functional (1.1). as the 
limiting case of a holonomic system with a finite number (n) of degrees 
of freedom (for which Jacobi’s classical theorem is valid) then there 
arises quite naturally the question: what becomes 
gral of the classical Hamilton-Jacobi equation in 
infinity? 

of the complete inte- 
the limit as n goes to 

The limiting form of this equation has already been obtained; it is 

equation (2.10). Its solution is the functional S. This functional co- 
incides with the one which one obtains by the limit process from the 
complete integral of the corresponding finite-dimensional problem; it is 
natural to call it the complete L&Y [41 integral. The complete L&Y 
integral in the two-dimensional variational problem has two functional 
arguments: an unknown function z(x, y), and a parametric function a(x); 
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besides that, it depends also 

tional of L&y the parametric 

tion 2(x, a). One should note 

K.A. Lur’e 

on the variable y. In the principal func- 

function coincides with the initial func- 

that the Hamilton-Jacobi equation (2.10) 

has (in analogy with the classical one) many complete integrals. Here, 

we shall not dwell on the relationship among them. In particular, the 

complete L&y integral does not always contain explicitly the parametric 

function a(x) as a functional argument. This function can appear in the 
integral, for example, in the form of an infinite number of constants. 

The parametric function appeared in the complete functional as the re- 

sult of the limit process applied to a system of constants that were in- 

cluded in the complete integral of the Hamilton-Jacobi equation for the 

finite-dimensional “approximating” problem. It may happen that some of 

these constants become “isolated” constants also in the limit. The 

possibilities which can arise hereby are best considered on particular 

examples. 

3. Hamilton-Jacobi method. We shall generalize a known inequal- 

ity for the determinant of the matrix of mixed derivatives which charac- 
terizes the complete integral of the ordinary Hamilton-Jacobi equation. 

lhe functional 

S [z, a; yl = limS, (z,, . . ., k, al, . . ., (51; y) 

will be a complete L&y integral of the equation 

‘Ihe continuous analogue of this inequality is the sought condition. 

What is actually needed is that the equation (3.1) be solvable for z 
(see below). 

(2.10) if 

‘Ibe JIanilton-Jacobi method of solving the canonical system (1.9) is 

based on the validity of the following generalization of Jacobi’s 

theorem. 

Theorem. Let S[z, a; yl be a complete L&y integral of the Hamilton- 

Jacobi equation (2.10), and let p(x) be an arbitrary function. Then the 

functional z = z[x, y; a, ~1' which is determined by the equation* 

6s 
-&ii-= P (3-j) 

* The remark made above (p.385) with respect to the parametric function 

applies to this formula. 
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and the functional 

*=g (3.2) 

constitute the general solution of the canonical system (1.9). 

IIhe proof is imediate if one shows that on each integral surface 

We have 

Substituting S = S[z, a; yl in equation (2.101, and taking the vari- 
ation with respect to a, we obtain 

Substituting this into the preceding equation we see that 

On the integral surface zY = &V/67; hence 

a&s 0 --:: 
aY ~ 

which was to be proved. 

If S is a complete L&y integral then equation (3.1) can be solved 
for z and we thus obtain the problem’s general solution which depends 
on two arbitrary functions u and p. The equation (3.2) determines then 
the canonical adjoint impulse q, ‘lhe functions a and p are determined by 
the initial conditions. 

4. Exaamle. Let us consider as an example the siraplest problem of the 
vibration of a string. 

The equation tYY - zXX = 0 is Euler’s equation for the functional 

ff co 

I -3 dy 
s s 

ds (2; - 2,‘) 
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ge shall seek the solution of Cauchy’s problem z 
zy(y =,, = p(z) by the use of the Hamilton-Jacobi 
function is given by 

00 

and the equation (2.10) takes on the form 

The finite-dimensional analogue is the Hamilton-Jacobi equation of a 
system of elastically connected oscillators separated by a distance a 
from each other. The functional S[z; yl is here replaced by the function 

S(ZI. . . . . zn; y) of n + 1 variables (n is the number of oscillators) 

The complete integral of this equation is easily found by a trans- 
formation to the principal coordinates with the aid of the canonical 
transformat$on 

8i = -?- fJ z,*inn$& 
n+l 

p-1 

The “old” impulses qi will be connected with the “new” ones vi by 
the relations 

In terms of the principal coordinates we have 

Here E and -ri are constants. 

By Jacobi’s classical theorem 

( Li = 2 sin -j+$- 
1 
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Prom these equations one obtains without difficulty 

389 

The superscript prime in the last sum indicates that the term Pi is 
to be omitted. For zu we obtain 

Let us take the limit as n = m, a = 0, na = 1 (the string is fastened 

at the ends). We obtain 

Ai in 
limT’-j-’ 

il B % 

==n+i. Yiz= 6 lilllp=a, 

O” I 
limzi=z(z, y)=- 2 -_2(e+aP) sinysin$!!(y--yP) 

(100 p=1 Pv 

From this one can easily obtain the next expression if one makes use 

of the initial conditions 

loo 
2 

z=- 
1 P 

sin u!! sin lrnE 
1 1 

e PL=l [ 
a (PJ co9 T + P (E) sin ;wy)‘z) ] d 

This leads to the ordinary d’ Alembert formula* if 1 - a. 

Let us write down the continuous analogues of the performed opera- 
tions. For the infinite string the complete L&y integral takes the form 
of the functional integral [ll] 

The lower limit of the inner integral is unessential; we”shal1 set 

it equal to zero. In place of 
of brevity. The function S(E) 

e(<, y) we shall write e(c) for the sake 
is subjected only to the condition 

03 

e(E)dE=i 

and is arbitrary otherwise. The function a(<) is a Parametric function 
satisfying the condition 

l With a corresponding change in the origin of the coordinate x. 
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cm 

d GJ 4. = 0 (4.1) 

which is a generalization of the corresponding condition for the con- 

stants 7i in the finite-dimensional problem. 

Varying S with u under the additional condition (4.1). we find 

(4.2) 

Here A is a Lagrange multiplier. The integral in this formula is 

taken in the function space 8 along some path which connects the points 

0 and e(e). This integral can, however. be reduced quite easily to an 

ordinary integral [ill. In this connection we note that the integral 

(4.2) does not depend on the path of integration since the following 

condition is satisfied [ill 

6 1 8 1 

69 (Y) 1/2 [E6 (2) + d (x)] - zaea (2) = se v2 [E6 (y) + Q (y)] - ywf3’ (y) 

Let the integration path be the straight line 8 = 8(t)t. Then de = 

8(c)dt, and we obtain 

p (E) = - ; 
- tie (El 

sin-’ 1 v2 IE6 ce, + 0 (EN 1 + h (4.3) 

On the other hand, differentiating the complete L6vy integral with 

respect to E, we obtain 

Whence, as above 

From this and (4.3) it follows that 

43 

y-yo= c P(E) 6 (f) dE -A 
-A 

Hence 

h = \ P (E) 6 (5) df - (Y - YO) 
--CU 

(4.4) 
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Now we determine e(e) from (4.3) and (4.4). The remaining steps are 

obvious. It is easy to prove that the condition (4.1) is actually equi- 

valent to the requirement that the initial data be regular at infinity. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
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